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CONTROLLING TRANSONIC FLOW AROUND AIRFOILS

BY MEANS OF LOCAL PULSED ADDITION OF ENERGY

UDC 533.6.011S. M. Aul’chenko, V. P. Zamuraev, A. P. Kalinina, and A. F. Latypov

The influence of local pulsed-periodic addition of energy into a supersonic region on the flow struc-
ture and wave drag of an airfoil in transonic flow regimes is considered by methods of mathematical
modeling. The study reveals significant prospects of the considered method of controlling airfoil per-
formance in transonic flow regimes, including wave-drag reduction.
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Introduction. The progress in aviation engineering is currently impossible without the use of new tech-
nologies. They include advanced methods for energy addition: laser and microwave radiation, electric discharge.
The use of these methods for controlling the aerodynamic characteristics of airfoils, in particular, for decreasing
wave drag, can increase the velocity of the flying vehicle and retain a high lift-to-drag ratio.

The issues of the action of local energy addition on the gas-flow structure were considered in many papers
(see, e.g., [1–8] and the references therein). The analysis of results obtained in these papers shows that comparatively
moderate energy addition can significantly alter the supersonic flow structure up to its cardinal reconstruction. The
transonic range of velocities is considered in [9], where the effect of energy addition in a local supersonic region
above a symmetric airfoil at zero incidence is numerically studied in a steady formulation, and also in [10–12], where
it is shown within the framework of an unsteady problem that it is principally possible to control both local and
integral characteristics of airfoils in transonic flow regimes by means of pulsed-periodic energy addition. Thus, the
study of the possibility of controlling the aerodynamic performance of transonic airfoils by means of energy addition
into the flow is a new problem that requires consideration.

1. Formulation of the Problem. The mathematical model of the flow is based on a system of two-
dimensional unsteady gas-dynamic equations, i.e., the Euler equations in a conservative form for a gas with a
constant ratio of specific heats γ are solved:

∂U

∂t
+

∂F

∂x
+

∂G

∂y
= Q,

U = (ρ, ρu, ρv, e), F = (ρu, p + ρu2, ρuv, u(p + e)),

G = (ρv, ρuv, p + ρv2, v(p + e)), Q = (0, 0, 0, q).

Here the coordinates x and y are directed along and across the airfoil chord, respectively, and are normalized to
its length L, the normalization parameters are L/a0 for the time t, a0 for the gas-velocity components u and v and
the velocity of sound a, ρ0 for the density ρ, ρ0a

2
0 for the pressure p and total energy per unit volume of the gas e,

and ρ0a
3
0/L for the power added per unit volume of the gas q; p0 and a0 are the dimensional free-stream pressure

and velocity of sound; ρ0 is determined from the condition p0 = ρ0a
2
0. For the gas model considered, we have

p = (γ − 1)(e− ρ(u2 + v2)/2), a2 = γp/ρ.
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TABLE 1

Variant No. M∞ Nx ×Ny Lx × Ly Cx

1 0.50 88× 80 7× 8 0.0172
2 0.50 176× 160 7× 8 0.0082
3 0.50 176× 160 13× 16 0.0148
4 0.70 88× 80 7× 8 0.0122
5 0.70 176× 160 7× 8 0.0059
6 0.70 352× 320 7× 8 0.0030
7 0.70 176× 160 13× 16 0.0103
8 0.85 88× 80 7× 8 0.0501
9 0.85 176× 160 7× 8 0.0468

10 0.85 352× 320 7× 8 0.0450

For the pulsed-periodic addition of energy, the value of q is determined as

q = ∆e f(t),

where f(t) =
∑

i

δ(t − i∆t), δ(t) is the pulsed Dirac function, ∆t is the period of energy addition, and ∆e is the

energy added per unit volume of the gas.
The system of equations is supplemented by the boundary conditions at the boundaries of the doubly

connected domain Ω, which is a rectangle with an internal boundary corresponding to the contour of the NACA-
0012 airfoil. Free-stream conditions are imposed on the left, upper, and lower boundaries, “soft” conditions are set
at the right boundary, and impermeability conditions are used for the airfoil contour.

The computational grid in the physical region is geometrically adapted to the airfoil contour: the grid is
refined in the vicinity of the airfoil and rectangular in the canonical region; the number of nodes is 352 × 320.
To find a numerical solution, a total variation diminishing finite-volume scheme (TVD reconstruction) is used
between the instants of energy addition. The fluxes at the cell boundaries are calculated by the method described
in [13]. Integration in time is performed by the third-order Runge–Kutta method. In the model considered, the
pulsed addition of energy is performed instantaneously; the gas density and velocity remain unchanged. The energy
density of the gas e in the zone of energy addition increases by ∆e = ∆E/∆S (∆E is the total energy being added
and ∆S is the area of the energy-addition zone). The initial distribution of parameters corresponding to the steady
flow around the airfoil without energy addition was obtained with an absolute error of 10−4 for simple variables ρ,
u, v, and p in all grid nodes. From the beginning of energy addition to obtaining the periodic solution, the problem
is solved in an unsteady formulation. The moment of reaching the periodic solution was determined by comparing
the drag coefficients of the airfoil with a period of time equal to the period of energy addition. The absolute error
was within 10−6.

Test Computations. The error of calculating the drag coefficient of the airfoil for the free-stream Mach
number M∞, computational domain size, and number of nodes indicated in Table 1 was evaluated.

For M∞ = 0.70, the flow is subsonic everywhere. Therefore, the value of drag Cx = 0.003 obtained in variant
No. 6 can serve as an estimate for the accuracy of the method. The computation on nested grids yields a monotonic
decrease in the error (variant Nos. 4–6). Expansion of the computational domain with a fixed number of nodes
leads to a higher error, which is equivalent to a decrease in the number of nodes in a fixed domain (variant Nos. 5
and 7). The error increases with decreasing Mach number, since the relative error of computing the gas workability
is δ ∼ M−2

∞ (variant Nos. 1–3). Therefore, it was assumed in computations with M∞ = 0.85 that the wave drag is
overrated by approximately ∆Cx ≈ 0.003. The corresponding relative error of computing the drag coefficient for
variant No. 10 is approximately 7%.

Computation Results. The results were obtained for an ideal gas with γ = 1.4, M∞ = 0.85, and zero
angle of attack of the airfoil with varied positions of energy-addition zones for different values of added energy and
a period ∆t = 0.5 (the corresponding dimensionless frequency of energy addition is ω = 2).

Figures 1 and 2 show the pressure fields for the initial steady flow without energy addition and for the
periodic flow with energy addition ∆E = 0.03 at the time immediately before the energy “pulse.” In Fig. 2, one
can see the fractal structure of pressure contours, reflecting the pulsed-periodic character of energy addition (the
boundaries of the energy-addition zone are shown by the white line; the y scale is increased to show the energy-
addition zones). For the same computation variant, Fig. 3 shows the evolution of the flow structure around the
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Fig. 1. Pressure contours in a steady flow around the airfoil without energy addition.

Fig. 2. Pressure contours with energy addition.
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Fig. 3. Pressure contours for different times after the beginning of energy addition: t = 0.01 (a) and 0.05 (b).

airfoil: the pressure contours are plotted in time intervals of 0.01∆t and 0.05∆t after the next instant of energy
addition. Energy addition gives rise to a shock wave. Part of the shock-wave front moving upstream decelerates
the flow, attenuates the intensity of the terminal shock, and decreases the size of the supersonic region. The shock
wave moving downstream is attenuated and forms the fractal structure of the flow.

Figure 4 shows the distributions of the pressure coefficient cp over the airfoil contour in the flow without
and with energy addition (∆E = 0.01, 0.03, and 0.10). Curves 2–4 are plotted for the periodic solution at the time
immediately before energy addition. In the case with ∆E = 0.01, the size of the supersonic zone decreases, the
shock wave is shifted upstream (and approaches the energy-addition zone), and the shock-wave intensity decreases,
which results in a pressure increase behind the shock wave. Two latter factors are responsible for the decrease in
wave drag of the airfoil. Figure 5 shows the pressure distribution in the vicinity of the shock wave for ∆E = 0.01,
which illustrates the above-mentioned changes in the flow structure due to energy addition. The flow regime around
the airfoil with ∆E = 0.03 is characterized by an even greater shift of the main supersonic zone in the upstream
direction; as a result, the energy-release zones are located behind the terminal shock in the secondary transonic
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Fig. 4. Distribution of the pressure coefficient over the airfoil contour without energy addition (1)
and for ∆E = 0.01 (2), 0.03 (3), and 0.10 (4).

Fig. 5. Pressure distribution in the vicinity of the shock wave with energy addition.

TABLE 2

∆E θ Cx ∆Cx, %

0 0 0.0450 0
0.010 0. 0.0397 12
0.030 0.3 0.0316 30
0.100 1.0 0.0307 32

region with low intensity. A further increase in the energy added with ∆E = 0.10 destroys the supersonic zone
and forms two shock waves of approximately identical intensity, which is yet weaker than that in the initial flow
(without energy addition). Though a significant decrease in wave drag is observed in the latter case, the resultant
pressure-coefficient diagram can be hardly considered as aerodynamically reasonable because the probability of
earlier separation of the flow increases. In addition, one should take into account the energy expediency of the
flow-control method under consideration.

The relative value of the added energy (ratio of the added power to the incoming total enthalpy flux) can
be estimated as

θ =
ρω ∆e∆x∆y

ρu ∆y (cpT + 0.5u2)
=

(γ − 1)∆E

γ ∆y ∆t M∞(1 + 0.5(γ − 1)M2
∞)

,

where ∆e is the energy added per unit mass, ∆x and ∆y are the sizes of the energy-addition zone, ω is the frequency,
∆t is the period, and cp is the heat capacity. The drag coefficients of the airfoil for different values of added energy
are listed in Table 2. The last variant (θ = 1) seems to be the limiting one, because the energy added for flow control
becomes commensurable with the energy of fuel combustion in the engine. The realistic values are θ = 0.3–0.4; in
this case, ∆Cx = 20–30%.

The study of the influence of positions of energy-addition zones on the airfoil drag shows that the drag
coefficient increases from Cx = 0.0397 to Cx = 0.0491 as the energy-addition zones are shifted upstream to the
subsonic region and exceeds the drag coefficient obtained without energy addition. Energy addition upstream of
the airfoil also decreases the drag coefficient. In the computation performed, we have Cx = 0.0428.

Conclusions. An analysis of the computations performed shows that it is possible to control both the local
(distributions of gas-dynamic parameters on the airfoil) and integral (drag coefficient) characteristics of airfoils
in transonic flow regimes by means of local pulsed-periodic addition of energy. A periodic character of the flow
being formed is established, which allows the use of this flow in cruising flight regimes; examples of global and local
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reconstruction of the flow are given. The technique of modeling a transonic flow with energy addition and the results
obtained stimulate investigations on the influence of positions of energy sources, their size, shape, and intensity,
and frequency of energy addition on aerodynamic parameters of the flow around airfoils. It becomes possible to
design transonic airfoils with the maximum cruising Mach number with allowance for geometric and gas-dynamic
constraints and retaining a prescribed lift force under conditions of energy addition.
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energy,” Teplofiz. Aéromekh., 9, No. 3, 405–410 (2002).

6. V. P. Zamuraev and A. F. Latypov, “Control of supersonic flow vorticity by instant local and discrete distributed
energy release,” in: Proc. of the 4th Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications
(Moscow, April 9–11, 2002), Inst. of High Temp., Moscow (2002), pp. 78–85.

7. A. F. Latypov, “Estimation of energy efficiency of heat addition ahead of the body in a supersonic flow,” in:
Abstracts of the 8th All-Russia Forum on Theoretical and Applied Mechanics (Perm’, August 23–29, 2001), Inst.
Mech. Cont. Media, Ural Div., Russian Acad. of Sci., Perm’ (2001), p. 392.

8. A. F. Latypov and V. M. Fomin, “Evaluation of the energy efficiency of heat addition upstream of the body in
a supersonic flow,” J. Appl. Mech. Tech. Phys., 43, No. 1, 59–62 (2002).

9. A. S. Yuriev, S. K. Korzh, S. Yu. Pirogov, et al., “Transonic streamlining of profile at energy addition in local
supersonic zone,” in: Proc. of the 3th Workshop on Magneto-Plasma-Aerodynamics in Aerospace Applications
(Moscow, April 24–26, 2001), Inst. of High Temp., Moscow (2001), pp. 201–207.

10. S. M. Aul’chenko, V. P. Zamuraev, and A. F. Latypov, “On possibility to control a transonic streamlining of
the airfoil by means of a periodic pulse local energy supply,” in: Abstr. of the 5th Int. Workshop on Magneto-
Plasma-Aerodynamics in Aerospace Applications (Moscow, April 7–10, 2003), Inst. of High Temp., Moscow
(2003), p. 92.

11. S. M. Aul’chenko and V. P. Zamuraev, “Effect of local pulsed-periodic energy addition on the structure of the
transonic flow around airfoils,” Teplofiz. Aéromekh., 10, No. 2, 197–204 (2003).
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